翻訳と辞書
Words near each other
・ Morse, Texas
・ Morse, Wisconsin
・ Morse-Barber House
・ Morse-Tay-Leland-Hawes House
・ Morse/Long-range potential
・ Morsel
・ Morsel (band)
・ Morselli
・ Morsemere, New Jersey
・ Morses Creek
・ Morses Gulch
・ Morses Line Border Crossing
・ Morses Line, Vermont
・ Morseth
・ Morse–Kelley set theory
Morse–Palais lemma
・ Morse–Smale system
・ Morsgrisar
・ Morshansk
・ Morshansky
・ Morshansky District
・ Morshausen
・ Morshead
・ Morshead baronets
・ Morshed Ali Khan
・ Morshed Hossain
・ Morshed Khan
・ Morshedabad
・ Morshedabad (33°49′ N 48°12′ E), Selseleh
・ Morshedabad (33°50′ N 48°14′ E), Selseleh


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Morse–Palais lemma : ウィキペディア英語版
Morse–Palais lemma
In mathematics, the Morse–Palais lemma is a result in the calculus of variations and theory of Hilbert spaces. Roughly speaking, it states that a smooth enough function near a critical point can be expressed as a quadratic form after a suitable change of coordinates.
The Morse–Palais lemma was originally proved in the finite-dimensional case by the American mathematician Marston Morse, using the Gram–Schmidt orthogonalization process. This result plays a crucial role in Morse theory. The generalization to Hilbert spaces is due to Richard Palais and Stephen Smale.
==Statement of the lemma==

Let (''H'', 〈 , 〉) be a real Hilbert space, and let ''U'' be an open neighbourhood of 0 in ''H''. Let ''f'' : ''U'' → R be a (''k'' + 2)-times continuously differentiable function with ''k'' ≥ 1, i.e. ''f'' ∈ ''C''''k''+2(''U''; R). Assume that ''f''(0) = 0 and that 0 is a non-degenerate critical point of ''f'', i.e. the second derivative D2''f''(0) defines an isomorphism of ''H'' with its continuous dual space ''H'' by
:H \ni x \mapsto \mathrm^ f(0) ( x, - ) \in H^. \,
Then there exists a subneighbourhood ''V'' of 0 in ''U'', a diffeomorphism ''φ'' : ''V'' → ''V'' that is ''C''''k'' with ''C''''k'' inverse, and an invertible symmetric operator ''A'' : ''H'' → ''H'', such that
:f(x) = \langle A \varphi(x), \varphi(x) \rangle
for all ''x'' ∈ ''V''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Morse–Palais lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.